167 research outputs found

    A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant staphylococcus aureus pandemic

    Get PDF
    The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Measurement of ΜˉΌ\bar{\nu}_{\mu} and ΜΌ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(ΜΌ+nucleus→Ό−+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(ΜˉΌ+nucleus→Ό++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(Μˉ)σ(Îœ))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K Μˉ/Îœ\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of ΞΌ\theta_{\mu}500 MeV/c. The results are σ(Μˉ)=(0.900±0.029(stat.)±0.088(syst.))×10−39\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    Dark Matter And Bs→Ό+Ό−B_s \to \mu^+ \mu^- With Minimal SO10SO_{10} Soft SUSY Breaking

    Full text link
    CMSSM boundary conditions are usually used when calculating cosmological dark matter densities. In this paper we calculate the cosmological density of dark matter in the MSSM using minimal SO10SO_{10} soft SUSY breaking boundary conditions. These boundary conditions incorporate several attractive features: they are consistent with SO10SO_{10} Yukawa unification, they result in a "natural" inverted scalar mass hierarchy and they reduce the dimension 5 operator contribution to the proton decay rate. With regards to dark matter, on the other hand, this is to a large extent an unexplored territory with large squark and slepton masses m16m_{16}, large A0A_0 and small {ÎŒ,M1/2} \{\mu, M_{1/2} \} . We find that in most regions of parameter space the cosmological density of dark matter is considerably less than required by the data. However there is a well--defined, narrow region of parameter space which provides the observed relic density of dark matter, as well as a good fit to precision electroweak data, including top, bottom and tau masses, and acceptable bounds on the branching fraction of Bs→Ό+Ό−B_s \to \mu^+ \mu^-. We present predictions for Higgs and SUSY spectra, the dark matter detection cross section and the branching ratio BR(Bs→Ό+Ό−){\rm BR}(B_s\to \mu^+ \mu^-) in this region of parameter space.Comment: 15 pages, 5 figure

    Research priorities in regional anaesthesia: an international Delphi study

    Get PDF
    Background: Regional anaesthesia use is growing worldwide, and there is an increasing emphasis on research in regional anaesthesia to improve patient outcomes. However, priorities for future study remain unclear. We therefore conducted an international research prioritisation exercise, setting the agenda for future investigators and funding bodies. Methods: We invited members of specialist regional anaesthesia societies from six continents to propose research questions that they felt were unanswered. These were consolidated into representative indicative questions, and a literature review was undertaken to determine if any indicative questions were already answered by published work. Unanswered indicative questions entered a three-round modified Delphi process, whereby 29 experts in regional anaesthesia (representing all participating specialist societies) rated each indicative question for inclusion on a final high priority shortlist. If ≄75% of participants rated an indicative question as ‘definitely’ include in any round, it was accepted. Indicative questions rated as ‘definitely’ or ‘probably’ by <50% of participants in any round were excluded. Retained indicative questions were further ranked based on the rating score in the final Delphi round. The final research priorities were ratified by the Delphi expert group. Results: There were 1318 responses from 516 people in the initial survey, from which 71 indicative questions were formed, of which 68 entered the modified Delphi process. Eleven ‘highest priority’ research questions were short listed, covering themes of pain management; training and assessment; clinical practice and efficacy; technology and equipment. Conclusions: We prioritised unanswered research questions in regional anaesthesia. These will inform a coordinated global research strategy for regional anaesthesia and direct investigators to address high-priority areas

    Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium-loaded water

    Get PDF
    We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay with efficient background rejection and higher signal efficiency thanks to the high efficiency of the neutron tagging technique. In this paper, we report the result for the initial stage of SK-Gd with a 22.5×55222.5\times552 kton⋅day\rm kton\cdot day exposure at 0.01% Gd mass concentration. No significant excess over the expected background in the observed events is found for the neutrino energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90% confidence level. The limits and sensitivities are already comparable with the previous SK result with pure-water (22.5×2970kton⋅day22.5 \times 2970 \rm kton\cdot day) owing to the enhanced neutron tagging

    Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline

    Get PDF
    A class of extensions of the Standard Model allows Lorentz and CPT violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and CPT-violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 10 20 at the GeV scale
    • 

    corecore